Biomachines

The Strange world of Bionanomachines

Very remarkably, many of nanomachines will always perform their functions automatically, after they are isolated and purified, provided the environment is not too hard. They must not be sequestered inside the cells in the pure state. Each of them constitutes a self-sufficient molecular machine. Natural digestive enzymes such as pepsin and lysozyme are so hard […]

Read More
3397

Replication Cycle of Viruses

With all their different genomic structures, forms, and sizes, viruses basically have a relatively simple replication cycle. While only the genome of a bacteriophage enters a bacterium, the complete virus (genome and capsid) enters a eukaryotic cell. General sequence of the replication cycle of a virus in a cell The replication cycle of a virus […]

Read More
3388

Viruses

Viruses are important pathogens in plants and animals, including man. The complete infectious viral particle is called a virion. Its genome carries a limited amount of genetic information, and it can replicate only in host cells. From analysis of the structure and expression of viral genes, fundamental biological processes such as DNA replication, transcription regulation, […]

Read More
3380

DNA Transfer between Cells

Transfer of DNA occurs not only by fusion of gametes in sexual reproduction but also between other cells of prokaryotic and eukaryotic organisms (conjugation of bacteria, transduction between bacteriophages and bacteria, transformation by plasmids in bacteria, transfection in cultures of eukaryotic cells). Cells altered genetically by taking up DNA are said to be transformed. The […]

Read More
3373

Nuclear Pores

Nuclear Pore definition The nuclear pores are large protein complexes of the nuclear envelope that regulate the transport of substances between the cytoplasm and the cell nucleus, such as proteins, RNA, hormones. On average, there are about 2000 nuclear pores in the nuclear envelope of a vertebrate cell, but can vary depending on the cell […]

Read More
3364

Bacteriophages

The discovery of bacterial viruses (bacteriophages or phages) in 1941 opened a new era in the study of the genetics of prokaryotic organisms. Although they were disappointing in the original hope that they could be used to fight bacterial infections, phages served during the 1950s as vehicles for genetic analysis of bacteria. Unlike viruses that […]

Read More
3357

Recombination in Bacteria

In 1946, J. Lederberg and E. L. Tatum first demonstrated that genetic information can be exchanged between different mutant bacterial strains. This corresponds to a type of sexuality and leads to genetic recombination. A. Genetic recombination in bacteria In their classic experiment, Lederberg and Tatum used two different auxotrophic bacterial strains. One (A) was auxotrophic […]

Read More

Isolation of Mutant Bacteria

Important advances in genetics were made in the early 1950s through studies of bacteria. As prokaryotic organisms, bacteria have certain advantages over eukaryotic organisms because they are haploid and have an extremely short generation time. Mutant bacteria can be identified easily. The growth of some mutant bacteria depends on whether a certain substance is present […]

Read More

Xeroderma Pigmentosum

Xeroderma pigmentosum (XP) is a heterogeneous group of genetically determined skin disorders due to unusual sensitivity to ultraviolet light. They are manifested by dryness and pigmentation of the exposed regions of skin (xeroderma pigmentosum=“dry, pigmented skin”). The exposed areas of skin also show a tendency to develop tumors. The causes are different genetic defects of […]

Read More
DNA repair

DNA Repair

Life would not be possible without the ability to repair damaged DNA. Since replication errors, including mismatch, and harmful exogenous factors are everyday problems for a living organism, a broad repertoire of repair genes has evolved in prokaryotes and eukaryotes. The following types of DNA repair can be distinguished by their basic mechanisms: (1) excision […]

Read More