DNA mutation

Changes in DNA (Mutations)

When it was recognized that changes (mutations) in genes occur spontaneously (T. H. Morgan, 1910) and can be induced by X-rays (H. J. Muller, 1927), the mutation theory of heredity became a cornerstone of early genetics. Genes were defined as mutable units, but the question what genes and mutations are remained. Today we know that […]

Read More

DNA Amplification by Polymerase Chain Reaction (PCR)

The introduction of cell-free methods for multiplying DNA fragments of defined origin (DNA amplification) in 1985 ushered in a new era in molecular genetics (the principle of PCR is contained in earlier publications). This fundamental technology has spread dramatically with the development of automated equipment used in basic and applied research. Polymerase chain reaction (PCR) […]

Read More
Southern blot

Restriction Analysis by Southern Blot Analysis

Restriction endonucleases are DNA-cleaving enzymes with defined sequences as targets. They are often simply called restriction enzymes. Since each enzyme cleaves DNA only at its specific recognition sequence, the total DNA of an individual present in nucleated cells can be cut into pieces of manageable and defined size in a reproducible way. Individual DNA fragments […]

Read More
DNA cloning

DNA Cloning

To obtain sufficient amounts of a specific DNA sequence (e.g., a gene of interest) for study, it must be selectively amplified. This is accomplished by DNA cloning, which produces a homogeneous population of DNA fragments from a mixture of very different DNA molecules or from all the DNA of the genome. Here procedures are required […]

Read More
Automated gene sequencing

Automated DNA Sequencing

Large-scale DNA sequencing requires automated procedures based on fluorescence labeling of DNA and suitable detection systems. In general, a fluorescent label can be used either directly or indirectly. Direct fluorescent labels, as used in automated sequencing, are fluorophores. These are molecules that emit a distinct fluorescent color when exposed to UV light of a specific […]

Read More
Gene sequencing

Genome sequencing

Knowledge of the nucleotide sequence of a gene provides important information about its structure, function, and evolutionary relationship to other similar genes in the same or different organisms. Thus, the development in the 1970s of relatively simple methods for sequencing DNA has had a great impact on genetics. Two basic methods for DNA sequencing have […]

Read More
DNA Eukaryotic gene structure

Eukaryotic gene structure

Eukaryotic genes consist of coding and noncoding segments of DNA, called exons and introns, respectively.At first glance it seems to be an unnecessary burden to carry DNA without obvious functions within a gene. However, it has been recognized that this has great evolutionary advantages. When parts of different genes are rearranged on new chromosomal sites […]

Read More

Alternative DNA Structures

Gene expression and transcription can be influenced by changes of DNA topology. However, this type of control of gene expression is relatively universal and non specific.Thus, it is more suitable for permanent suppression of transcription, e.g., in genes that are expressed only in certain tissues or are active only during the embroyonic period and later […]

Read More
Observation of Griffith

DNA as Carrier of Genetic Information

Although DNA was discovered in 1869 by Friedrich Miescher as a new, acidic, phosphorus containing substance made up of very large molecules that he named “nuclein”, its biological role was not recognized. In 1889 Richard Altmann introduced the term “nucleic acid”. By 1900 the purine and pyrimidine bases were known. Twenty years later, the two […]

Read More